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It is shown that Yukawa's theory of elementary domains can be for- 
mulated in a general framework. A quantized measure space structure 
of a space-time manifold is introduced so as to represent faithfully the 
elementary-domain structure. For a realization of elementary domains, 
an operator valued measure is defined such that it represents the spatio- 
temporal distribution of elementary domains. Effects of such a quantized 
topology are illustrated in the expressions of S matrices. 

1. I N T R O D U C T I O N  

We are so used to the macroscopic space-time structure that even when 
we have to deal with the subnuclear region of space and time we are apt 
to adhere to classical concepts of  space-time such as Minkowski space. 
However, as is well known, physical phenomena taking place in such a 
subnuclear region of the world clearly show quantum theoretic behavior, 
so that we are obliged to reconstruct the quantum theoretic notion of 
space-time. 

Namely, in the present quantum field theory what is relevant for our 
epistemology may be how to deal with observables and their expectation 
values consistently, but not to argue the space-time structure itself as our 
physical objects. Nevertheless, we usually start f rom the classical notion of 
Minkowski space. This may be simply because of our timidity about 
abandoning the familialized traditional structure of  the classical space-time 
even in such a region as a subnuclear world. 

In this connection it may be noteworthy to review the monumental  
lecture by Riemann, 1854. Long before the advent of Einstein's theory of 
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relativity Riemann described precisely the fundamental notion of space 
metric as follows: 

Nun scheinen aber die empirishcen Begriffe, in welchen die 
r/iumlichen Massbestimmungen gegrtindet sind, der Begriff des 
festen K6rpers und des LichtstrahIs, im Unendlichkleinen ihre 
Gtiltigkeit zu verlieren; es ist also sehr wohl denkbar, dass die 
Massverh~iltnisse des Raumes im Unendlichkleinen den Voraus- 
setzungen der Geometric nicht gem/iss sind, und dies wfirde 
man in der Tat  annehmen mfissen, sobald sich dadurch die 
Erscheinungen auf einfachere Weise erkl/iren liessen (Riemann, 
1892). 

I f  we interpret the above statement in the terminologies of  modern physics, 
the metric of space has no a priori form, but should be attributed to the 
properties of interaction. For example, the classical notion of  distance, 
Euclidean metric, may have some validity only under the assumption of  the 
existence of rigid bodies. 

In the beginning of  his lecture Riemann mentioned explicitly the 
importance of a discrete manifold and suggested its topological study. 
Indeed the concept of continuity is a powerful tool to deal with approxima- 
tion process in physics, but it can hardly be realized in modern physics. 

In 1966 Yukawa proposed an atomistic quantum field theory, introducing 
small four-dimensional space-time domains D~ (i = 1 , . . . ,  N). There field 
operators cp are defined as set functions of  D~. There Yukawa imposed a 
certain restriction on the geometrical properties of the domains in order to 
prohibit a return to the conventional theory in the limit. 

In the present paper we shall try to elaborate Yukawa's original idea 
by making use of a new kind of measure space structure for the space-time. 
Effects that appear in our formulation of  S-matrix representation will be 
discussed. 

2. A TOPOLOGY OF PHYSICAL SPACE 

Since we have no a priori notion with respect to the structure of sub- 
nuclear space, we had better start from an abstract or general framework 
of  space as far as possible. Let us denote our physical space-time and its 
topology by ~ and ~;, respectively. ~ may manifest an elementary-domain 
structure in the subnuclear region, while ~ may reflect a certain quantum- 
theoretic property as creation and annihilation of particles in the region. 
Our aim is to construct the physical space (~, ~:) from the macroscopic 
space (X, r), where r is a standard topology. We shall call (X, r) a reference 
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space X and assume that it is normal and satisfies the second axiom of 
countability. This means that for any two disjoint closed sets there exist 
disjoint neighborhoods and any open set can be represented as a union of 
open sets which belong to a fixed countable family of  open sets. In other 
words, (X, ~-) has a continuity property, and is metrizable due to the 
Urysohn-Tychonoff theorem (Kelley, 1955), although we need not necessarily 
assume any metric explicitly. 

The reference space 2" has been utilized to describe macroscopic 
phenomena, where the notion of continuity plays an important role for the 
conventional procedures of  approximation. In fact, when we want to for- 
mulate approximation processes we have to assume the existence of limiting 
values in our framework. 

Let us explain the reference space 2" and its topology in more detail. 
X is a certain set of  elements which are not necessarily conventional points 
but basic entities for constructing macroscopic space. ~- is a family of subsets 
of  X satisfying the following conditions: 

(T-I) X, ~ ~ % where ~ is denotes an empty set. 
(T-2) countable unions and finite intersections of subsets that belong 

to ~- also belong to ~-. 

We shall call an element of  ~ an open set of  2", and ~- itself a standard 
topology. Obviously there are many ways to define such an open set even 
when the set X is definitely fixed. The reason why we start f rom such an 
abstract notion of topological space is to keep our freedom for choice of  
adequate physical models. 

Furthermore, for the sake of conceptual convenience, i.e., to make our 
formulation complete and symmetric with respect to set-theoretical calcula- 
tions u and n ,  we extend the topology ~- of  X to a Borel field x, which is 
a minimum a algebra including ~-. 

Now we shall proceed to a decisive step towards a quantum theoretic 
topology of  our space. As one of the widest frameworks of  quantum theory 
we adopt  the so-called C* algebra 9.1. Namely, dynamical variables or 
observables are assumed to be self-adjoint elements of  a norm closed in- 
volutive ring with , -operat ion over complex field C including unity 1. 
Then what we have to do is to construct C* algebra 9~ on the measurable 
space (X, x). 

Let A be an open set with finite volume with respect to a a-finite measure 
rn, i.e., A ~ ~- c x and m(A) < oo. C* algebra ~(A) is generated by /z(A) 
and tz(A)* which satisfy the following anticommutation relations: 

tz(a)tz(A)* + tz(A)*tz(A) = re(A) (2.1) 

I~(a)tz(A) + t~(A)tz(A) = 0 (2.2) 
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Thus we obtain a specified C* algebra 

92 = U 92(A) (2.3) 
A 

where the overbar means to take a closure. 
At this stage we would like to introduce a new concept in order to relate 

a unique global observable with a topological and measurable structure of 
space-time which reveals itself through the behavior of field variables. We 
shall call it "supportance." A supportance of a Borel set B is defined as 
A(B) = t~(B)*tL(B) which has e additivity: 

B ~ for any disjoint family of  Borel sets { j}j= 1. 
The supportance of a Borel set B may be interpreted as a capacity of  

supporting field variables intrinsic to the subset B. This is a reason why we 
coin such a new terminology as supportance. Physically speaking, a concept 
of  supportance is a kind of generalization or an abstraction of a particle 
number operator n(D, t) = go(D, t)~o(D, t) introduced by Yukawa (1966). 
Indeed through the introduction of supportance, one may attribute a more 
general topology to the reference space X such that it can involve a discrete 
topology like elementary domains without referring explicitly to concrete 
geometrical structures of  elementary domains. I f  we dare say, the sup- 
portance of a space-time region A may have a value proportional to a 
number of  "elementary domains" contained in A. 

Here, it should be noted that so far no symmetry condition like an 
invariance with respect to the Poincar6 group has been imposed on our 
algebra 92. This is simply because in the present paper we are concerned 
exclusively with the topological structure of  space-time. We shall discuss 
later the symmetry properties of  our framework: 

To realize the physical significance of supportance more precisely, we 
introduce a physical state oJ, which is defined by a normalized positive linear 
functional on 92. Then an expectation value of a supportance of an open 
set A is given by o~(Z(A)). 

On the other hand, in virtue of  anticommutation relations (2.1) and 
(2.2), we can derive an adequate spectral property of  the supportance for 
any m-bounded set A as 

[IA(A)II = m(A) (2.5) 

Since A(A) characterizes a quantum-theoretic topology of the physical 
space-time ~ and can certainly involve a discrete topology, we shall call the 
new topology induced by A(A) a quantized topology. This is, in essence, 
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similar to the complete set of elementary domains {n(D1, t) , . . . ,  n(DN, t)} 
proposed by Yukawa (1966). 

3. CONSTRUCTION OF A WHOLE PHYSICAL SPACE-TIME 

In the previous section we focused our attention on the generalized 
topological structure of a physical space-time in the subnuclear region and 
introduced a quantized topology into the reference space-time. Then a 
question may arise as to the relation between the subnuclear region and the 
macroscopic ones. This has been always one of the most serious problems 
when we deal with the space-time structure to describe elementary particles 
and their fields in a comprehensive way. For example, if we try to apply 
straightforwardly a method of conventional general relativity to the sub- 
nuclear region, we encounter a serious drawback, namely, how to connect 
a curved inner space with a fiat outer space consistently. 

As is well known, the geometrical framework of general relativity has 
been physically concerned with the global structure of space-time. In fact, 
the local structure of the space has always been assumed to be fiat in its 
limit, and various models of global structure have been constructed by 
differentiable metric tensors with certain connection coefficients. Here, we 
should remind ourselves of the fact that the space-time structure in the 
subnuclear region reveals itself only through quantum phenomena. So it 
seems hopeless for us to build a differential geometry in the level of classical 
physics. In this connection an attempt to construct quantum field theory on 
a stochastic basis has been made by Ingrain (1962, 1964). But the difficulty 
with respect to comprehensive treatment of two spaces, inner and outer, is 
still an open question. 

In the quantum field theory we deal only with observables of a certain 
dynamical system which manifest themselves in the space-time. Elementary 
particles created in an extremely localized region can travel a certain distance 
which is measurable in a macroscopic scale. Therefore kinematical behavior 
of elementary particles must be described in the classical framework of the 
Minkowski space, although quantum-theoretic treatment is needed for their 
observation. 

In the circumstances it seems quite natural to assume that the reference 
space is on one hand endowed with the Minkowski space ~ and the Lebesgue 
measure on it as a ~-finite measure. Then, carrying out the procedures similar 
to that explained in the last section, one can construct another C* algebra 
9.1~ = u a  9.1p(A), where A is an arbitrary finite open set of ~ .  9.1~(A) denotes 
the polynomial algebra of field operators whose supports are contained in A. 

We are now ready to unify two fundamental notions, quantum field of 
matter and classical space-time, in a comprehensive scheme. As far as we 
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are concerned with a physical reality elaborated in quantum mechanics, a 
physical space-time ~ should be totally represented by a certain algebra of 
observables with respect to our physical objects, a quantum system. As we 
explained in the beginning of  this paper, we adopted the C* algebra for 
that purpose, because it seems at this moment to be one of the most promising 
models having the possibility of  overcoming the difficulty related with the 
problem of an infinite degree of freedom. 

Consequently we propose as a physical space the following tensor 
algebra: 

9a~ = 9ap | 9a (3.1)  

Here the tensor algebra means an algebra consisting of tensor products or 
Kronecker products of  each element of 9Ap(A) and each one of ~(A) such 
that it satisfies the distributive law. 

It is straightforward to construct a S-matrix representation with respect 
to material fields in our scheme. For that purpose, of course, we ought to 
confirm the possibility of integration with respect to supportance )~. In virtue 
of  several adequate properties imposed on the topology and measure of 
space ~, we can uniquely define the integral. The proof  is given in the Ap- 
pendix. Let ~(x) be a Lagrangian density made of algebra 9AF. We can 
write down the S matrix as 

S = P* exp [-~ f e(x) Q ;~(d4x)] 

[ ife(x)| (3.2) = P* exp - ]  

where p(x) is a Radon-Nikodym derivative of h and P* means a procedure 
to take the covariant chronological order as in the usual quantum field 
theory. 

An effect of the topological structure of space-time on the case of 
the quantized matter field ~0(x) may appear through commutation relations 
between t~(A) and/~(A)*. To specify the relations we need an entirely new 
physical notion, but the following may be possible: 

[~*(A), ~0(x)]~ = a . (A)  
[~(A), ~o*(x)]~ = - aAA)  

where 8.(.)  denotes the Dirac measure concentrated on x. 

4. POSSIBLE CONSEQUENCES OF A NEW PHYSICAL 
SPACE-TIME 

In the present paper we have argued mainly a general structure of the 
whole physical space-time. However, already in the S-matrix representation 
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given by (3.2) some striking feature different from the conventional quantum 
field theory seems to have appeared. Let us explain the situation briefly. 

Since the whole physical space-time ~ is assumed to be the tensor 
algebra 9.1r, any physical state oJr of the total quantum system should be 
represented by a tensor product of state functionals ~o e and ~o defined on 
9.1~ and 9.1, respectively; namely, 

oJr = cop | co (4.1) 

Naturally, what is relevant to the physical observation is an expectation 
value of the S matrix with respect to a state co:, on 9.lr, i.e., the S-matrix 
element. It can be expressed as follows: 

i ~(d4x)]} ~,r(X) = (~e | o~){P* exp [-g f ~.(x) | 

= 1 +  f 
+ (-~-)2fo, AP*{e.(x)e(x')})o4a(d'x)a(d'x')) 
+ . . .  (4.2) 

where the Dyson expansion (Bogoliubov and Shirkov, 1959) is used. 
For an illustration of the feature mentioned above we may pick up the 

first integral appearing in the right-hand side of  (4.2) 

f oJp(~.(x))o)(~(d~x)) (4.3) 

Since we have not  specified concrete physical contents of two algebra 9.1 
and 9.lp, we are not in a position to prove the following conjecture, but it 
seems quite plausible: Namely, owing to the quantized topology 2t, oJ(1(d4x)) 
is certainly not so smooth as the usual Lebesgue measure. It might be able 
to nullify singular regions of o~p(~(x)) by its zero contribution to the integral. 
Needless to say, the conventional quantum field theory corresponds to a 
special case of Go(2t(d4x)) = d~x. 

Previously several attempts have been made to eliminate the divergence 
difficulties by introducing stochastic notions to the fundamental metric 
tensors of four-dimensional pseudo-Riemannian space or quantizing the 
space-time. Concerning the former approach we may simply point out that 
the choice of  randomness seems to be quite arbitrary and it can hardly be 
amalgamated with the present quantum theoretic scheme (Blokhintsev, 
1973). On the other hand, the latter case is in appearance very similar to 
ours (Finkelstein, 1969). 2 Since the invariant volume element of the pseudo- 

2 In this paper the main stress is put on the quantum mechanical description of the 
causal relation between space-time points. 



1000 Toyoda and Yasue 

Riemannian space is given by dV(x) = [ - d e t  g(x)] 1/2 d~x, the quantization 
of the gravitational field g(x) may suggest to us a kind of supportance on 
the space as 

~(d~x) = p(x) d~x 
= [ - d e t  g(x)] tj2 d~x (4.1) 

However, in such an approach we may not be able to comprehend a whole 
physical space, because the structural connection of inner and outer world 
is not so clear. 

There have been also two kinds of topological approaches to overcome 
the present difficulties of quantum field theory. One is to assign several 
intrinsic properties of  elementary particles such as electric charges to certain 
characteristics which can be derived from a combinatorial topology of the 
Riemannian geometry (Wheeler, 1962). There the space is assumed to be a 
simply or multiply connected differentiable manifold. The other one is to 
access the atomistic properties of matter and energy by looking for a suitable 
discrete topology of the space-time world. The last approach has been sug- 
gested by Yukawa and developed by himself and his colleagues in the 
framework of "elementary domains" (Katayama and Yukawa, 1968; 
Katayama et al., 1968). 

The present work, we think, is just on the same line as Yukawa's, but 
may be more general and abstract in its formalism, because we have tried 
to be free from any kind of model conceptualized in the macroscopic world 
as much as possible. 

Of course, in pursuit of precise descriptions for various high energy 
phenomena we have to find out concrete forms of S-matrix representation 
and also to determine explicitly the state on the quantized topology of  the 
space-time. Furthermore, a physical and mathematical interrelation between 
such a generalized topological and measurable structure of space-time and 
behaviors of  field variables should be investigated more extensively. We 
shall discuss these problems in a forthcoming paper. 

A P P E N D I X  

For the sake of saving space we shall not repeat here the definitions of  
9.1e, 9.1, A, ~ ,  and a, which are all given in the text. 

Proposition. If  s e 9.1~ c 92p, then there exists the integral 

r e(x) | a(d~x) 

where subalgebra ~.1~, consists of  bounded field operators with 
compact supports. 
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Proof. Since 9.1/, is a norm closed algebra on a Lebesgue measure space, 
there exists a sequence of step functions { ,}~=1 which is Lebesgue integrable 
and uniformly converging to s with respect to a norm 1]-lip of ~p. The 
explicit form of s  is given as follows: 

~(x) = ~ ~,jA..,(x) 
J = l  

where s e ~p(A~,j) and ~A..j denotes a characteristic function of A,~.j c ~ .  
Since s  is Lebesgue integrable and (2.5) is satisfied, the following 

condition is always fulfilled: 

II~.,,ll~" IIA(A.,3 il < 
j = l  

Hence one can define the integral of ~= as 

J = l  

Let us examine the Cauchy condition of a sequence of integrals 

e~(x) | ~(d' 
n = l  

with respect to a norm II" lit of the algebra Mr = ~r | 9.1. Using the distribu- 
tive law satisfied by the tensor algebra ~tT, Schwartz's inequality, and (2.5), 
successively, one can obtain the following relations: 

f .2,~(x) | h(d~x) - f J-m(X) | A(d~x)1= f~  {s - s | ~t(d~x) r 

~< j~  II~.(x) - 2.m(x)llP. lt~(d~x)ll 

= f ~  I t~(x)  - ~,.(x)ll~ d~x 

-+0  as n, m-+oo  

Thus the existence of a limit of the sequence {fzn s174 A(d%)}~=~ is 

proved. The limit is denoted by 

r e(x) | a(d4x) 
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